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Abstract. Image set classification has recently attracted increasing research 
interest in the field of visual information processing. Different from previous 
methods that usually characterize set data distribution explicitly using some 
parametric or non-parametric models, this paper proposes a simple yet effective 
Partial Least Squares (PLS) regression based method, which seeks to directly 
learn the underlying statistical relationship between the distributions of set data 
and their class memberships. With no assumption on the form of set data 
distribution, the learned model finally reduces to an efficient linear regression 
from the data space to the class label space, facilitating robust classification of 
novel test data. Experiments on face recognition and object categorization have 
shown that the proposed method is competitive to the state-of-the-arts and also 
quite robust to the noisy set data in practical applications.      
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1 Introduction 

In recent years, with the increase of available video cameras and large capacity 
storage media, many new applications are emerging, such as visual surveillance, 
video retrieval, digital photo albums management, etc. In such applications, each 
object of interest can have a number of image sets for both training and testing, where 
each image set generally contains lots of images belonging to the same class and 
covering large appearance variations in pose, lighting, and non-rigid deformations. 
This is the so-called image set classification problem. By efficiently exploiting the 
rich set information, more robust object classification can be expected under more 
realistic conditions [1], [5], [14]. 

During the past decade, a number of methods have been proposed to solve the 
problem of image set classification [1], [2], [4], [5]. Generally, these methods  
make different prior assumptions on the form of set data distribution, and exploit 
either parametric or non-parametric mathematical  models to explicitly characterize 
data variations in the image set. For parametric modeling, single Gaussian and 
Gaussian mixture models (GMM) have been explored in earlier works [1], [10] as  
the parametric distribution function of the image set. Their success highly rely on  
the assumption that the training and novel test data sets have strong statistical 
correlations. 
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Fig. 1. The basic overview of the proposed SLR method. In the PLS learned latent space, the 
covariance of the projected image samples and their associated class labels are maximized. 

For non-parametric modeling, one class of prevalent methods are based on the 
model of single linear subspace [5], [15] or more sophisticated nonlinear manifold 
[6], [12], [14]. Since they can flexibly characterize complex data variation, such 
methods have gained wide success in past several years. However, linear subspace is 
a relatively loose representation of the data distribution as noted in [2], while 
manifold typically needs a large data for reliable estimation, which are unavailable in 
some practical applications. More recently, a new type of non-parametric methods 
based on affine subspace model have been introduced [2], [4]. While data variations 
can be effectively handled, such methods are shown to be sensitive to outliers and 
have much higher computational cost, due to their inherent single sample-based 
matching mechanism [13], [14].   

In this paper, we propose a simple yet effective Sample-Label Regression (SLR) 
approach to image set classification. By exploiting the Partial Least Squares (PLS) 
regression, SLR aims to directly learn the underlying statistical relationship between 
the set samples distribution and their class labels distribution. Different from previous 
methods, our approach makes no assumption on the form of set data distribution and 
the learned model finally reduces to an efficient linear regression from the image data 
space to the class label space. When applying the learned model to a novel test image 
set, it only involves computing the class membership score for each image in the set 
using linear regression, and then aggregating these scores to finally determine the 
label of the whole set. Fig.1 illustrates the basic idea of the proposed SLR method.   

2 PLS-Based Image Set Classification 

Formally, given m  training image sets as: 1 2, ,..., mS S S , we denote 

,1 ,2 ,= [ , ,..., ]i i i i NiX x x x  ( 1,2,...,i = m ) as the data matrix of the i-th image set iS  with 
Ni  samples, where ,

d
i j ∈ℜx  is the j-th image sample with d -dimensional feature 

description. Each set belongs to one of c  object classes denoted by 

=1{ | {1, 2,..., }}m
i i iL L c∈ . To facilitate following description, we group all training 

image samples in a single data matrix: 1 2= [ , ,..., ]T
mX X X X  of size ×N d , where 

each row of the matrix is an image sample and 
1

m

i=
N = Ni  is the total number of 

image samples from all m  training image sets. 
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In the next, we first introduce the basic mathematical model of the Partial Least 
Squares (PLS) method including both its linear and kernel formulations. Then we 
elaborate the training and testing framework of exploiting PLS for the specific task of 
image set classification. 

2.1 Background of Partial Least Squares (PLS) 

Partial Least Squares (PLS) is a wide class of methods for modeling relations between 
two sets of observed variables by means of latent variables. In its general form, PLS 
creates score/latent vectors by using existing correlations between different sets of 
variables while also keeping most of the variance of both sets. Please refer to [8] for 
more details. 

Let d∈ ⊂ ℜx   denote a d -dimensional vector of predictor variables in the first 
set of data and similarly c∈ ⊂ ℜy  denote a c -dimensional vector of response 
variables from the second set. Observing N  data samples from each set of variables, 
PLS decomposes matrix ×N dX  (it has the same meaning as the above total training 
data matrix X ) and ×N cY   into the form 

T +=X TP E  
(1) 

T +=Y UQ F  

where T  and U  are ×N p  matrices containing the extracted p  latent vectors, the 
×d p  matrix P  and the ×c p  matrix Q  represent loadings, and the ×N d  matrix 

E  and the ×N c  matrix F  are the residuals. Basically, PLS proceeds to find 
weight vectors w , v  such that 

2 2
1max [ ( , )] = [ ( , )]cov cov= =w v Xw Yv t u , (2) 

where t  and u  are the column vectors of T  and U  respectively, ( , )cov t u  is the 
sample covariance. Grouping the sequentially obtained weight vectors iw  in a 
matrix 1 2[ , , ..., ]p=W w w w , the regression coefficients between the two sets of 
variables X  and Y  can be estimated by: 

1 1= ( ) = ( )T T T T T T− −B W P W T Y X U T XX U T Y , (3) 

which results in the linear PLS regression ˆ =Y XB  [8]. 
Since it can often bring desirable performance gain by extending linear methods in 

a so-called RKHS (reproducing kernel Hilbert space) feature space via the kernel 
trick, in [9] the kernel formulation of PLS (KPLS) has been presented. The basic idea 
is to map the original  -space data into a RKHS feature space   with 

:  dφ ℜ  , where an inner product can be defined using the kernel function as: 
( ) , ( ) ( , )i j i jkφ φ =x x x x , and perform the kernel form of the optimization in Eq. (2). 

Let 1[ ( ), , ( )]T
Nφ φΦ = x x  be the feature matrix of the training points, the kernel 
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Gram matrix can thus be written as Τ= ΦΦK  with ( , )ij i jk=K x x . Then the 
regression coefficients φB  in the feature space will have the form: 

1= ( )T T T
φ

−ΦB U T KU T Y , (4) 

Given a testing data example d
t ∈ℜx  in the  -space, its KPLS prediction ty  in 

the  -space can be obtained by 

1= [ ( )] = ( )T T T T
t t t

Τ
φφ −y x B K U T KU T Y , (5) 

where 1[ ( , ), , ( , )]T
t t N tk k= K x x x x .   

2.2 Exploiting PLS for Image Set Classification 

As illustrated in Fig.1, we exploit PLS regression to directly learn the underlying 
statistical relationship between the set samples distribution and their class labels 
distribution. Specifically, we use the training image sets iS  and their associated class 
labels iL  ( 1,2,...,i = m ) to learn the PLS or KPLS latent model. As described in 
Sec.2.1, the total training data matrix X  of size ×N d  acts as the predictor matrix 

×N dX . For each training image sample ,i jx  ( 1,2,...,i = m , 1,2,...,j = Ni ) with its 
corresponding set class label iL , we define its class membership indicator vector: 

, [0,...,1,...,0]T c
i j = ∈ ℜy , where the k -th entry being 1 and all other entries being 0 

indicates that ,i jx  belongs to the k-th class. The response matrix ×N cY  can then be 
easily constructed with ,

T
i jy  as its row vector. Taking the two matrices ×N dX  and 

×N cY  as input, either linear PLS or KPLS can then be used to learn the regression 
model in Eq. (3) or (4) respectively. In the KPLS formulation, we choose the widely 
used Gaussian RBF kernel function: 

2 2( , ) exp( )i j i jk σ= − −x x x x . (6) 

In the testing phase, suppose we are given a test image set tS  with 

,1 ,2 ,= [ , ,..., ]t t t t MX x x x  as its data matrix containing M  image samples, the 
classification task is to determine the class label of the image set. To this end, for each 
individual sample ,t jx  ( 1,2,...,j = M ) we first compute its class membership 
indicator vector ,t jy  (which is c -dimensional) using the PLS/KPLS regression 
model in Eq. (3) or (4). By aggregating these individual vectors, we then obtain the 
indicator vector of the whole image set as: 

,1

1 M

t t jjM
=

=y y . (7) 

Intuitively, the weight score in the k -th entry of ty  indicates the probability that the 
set belongs to the k-th class. Thus, the entry index with the largest score in ty  finally 
determines the class label of the test image set tS . 
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From above analysis, it can be seen that our method has the following advantages: 
(1) it makes no assumption of data distribution, thus can be stably applied in different 
scenarios; (2) it effectively integrates set information from individual samples, 
resulting in quite robust and efficient classification. Such properties will be verified in 
the following experiments.    

 

 

Fig. 2. Example images of the three benchmark databases. In (a) and (b), each row shows 
representative facial images from one video sequence of an individual. In (c), the first row 
shows images of the 8 different categories, and the second row shows example images of the 10 
different objects for one category.  

3 Experiments 

We evaluate the proposed method on three widely used datasets: Honda/UCSD [6], 
CMU MoBo [3] for image sets based face recognition, and ETH-80 [7] for object 
categorization. 

3.1 Databases and Settings 

The Honda/UCSD consists of 59 video sequences of 20 persons and each video 
contains about 300~500 frames covering large variations in head pose and facial 
expression. The CMU MoBo contains 96 sequences of 24 subjects and each subject 
has 4 sequences captured in different walking situations. Each sequence has about 300 
frames. We used a cascaded face detector [11] to collect faces in each video, and then 
resized each face to a 20×20 intensity image. Histogram equalization was used to 
eliminate lighting effects. Each video generated an image set of faces. The ETH-80 
contains images of 8 categories with each category including 10 objects. Each object 
has 41 images of different views which form an image set. 20×20 intensity images 
were also used. Fig. 2 shows some example images from each of the three databases. 

For comparison with the literature, we adopted the same protocol as [2],[13]. On 
all three datasets, we conducted ten-fold cross validation experiments, i.e., 10 
randomly selected training/testing combinations, to report average recognition rates of 
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different methods. Specifically, for both Honda and MoBo, each person had one 
image set for training and the rest sets for testing. For ETH-80, each category had 5 
objects for training and the other 5 objects for testing. 

3.2 Comparative Methods and Settings 

We compared our approach with several representative non-parametric methods for 
image set classification, including (i) Mutual Subspace Method (MSM) [15] as the 
baseline linear subspace based method, and (ii) Affine Hull based Image Set Distance 
(AHISD) [2], (iii) Convex Hull based Image Set Distance(CHISD) [2], (iv) Sparse 
Approximated Nearest Point (SANP) [4], which are all affine subspace based 
methods recently proposed in the literature. 

For fair comparison, the key parameters of each method were empirically tuned 
according to the recommendations in the original references as well as the source 
codes provided by the original authors. In MSM, PCA was performed to learn the 
linear subspaces by preserving 95% of data energy. For both AHISD and CHISD, we 
used their linear version and retained 95% energy by PCA. The error penalty in 
CHISD was set to = 100C  as [2]. For SANP, we adopted the same weight 
parameters as [4] for the convex optimization. 

In our proposed SLR method, we tested both the linear and kernel PLS regression 
models, referred to as “SLR_L” and “SLR_K” respectively. From Sec.2.1 it can be 
seen the PLS model has only one parameter, i.e., the number of latent vectors p , 
which was fixed to 100 in all three databases. We found the classification accuracy 
was quite stable while varying this number in our experiments. In the KPLS model, 
there is another important parameter, i.e., the window width σ  in the RBF kernel 
Eq. (6). It was adaptively set for each dataset as the mean of all sample pairs' 
Euclidean distances.  

3.3 Results and Analysis 

We tabulate the classification results of all methods on the three datasets in Tab. 1. 
Each reported rate is an average over the ten-fold trials. From the comparison results, 
we have the following observations: (1) Our method is very competitive to the state-
of-the-art ones in all three datasets. In both Honda and ETH-80 datasets, our method 
delivered the highest rate, and in MoBo dataset, our kernel regression ranked the 
second highest among all methods. (2) Compared with the linear PLS model, our 
kernel PLS model can further boost the performance with a modest margin, indicating 
that the difficult linearly inseparable problem can be effectively alleviated by the 
nonlinear kernel mapping. (3) In the ETH-80 object dataset, it is interesting to find 
that the affine subspace methods [2], [4] exhibit much lower accuracy due to that the 
common intra-class object variations cannot be handled adequately by the single 
points based matching. 
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Table 1. Average classification rate of different methods on three datasets by ten-fold trials  

Datasets MSM [15] AHISD [2] CHISD [2] SANP [4] SLR_L SLR_K 

Honda/ 
UCSD 0.925 0.885 0.905 0.936 0.931 0.956 

CMU MoBo 0.852 0.951 0.940 0.963 0.930 0.954 

ETH-80 0.878 0.773 0.735 0.755 0.895 0.903 

 
We further conducted experiment to test the robustness of different methods to a 

practical challenge where the image sets have noisy data from other classes. We 
followed the same setting as [2] to study this problem on the dataset Honda/UCSD. 
We tested three cases in which the training gallery and/or the testing probe sets were 
corrupted by adding one image from each of the other classes. The original clean data 
and the three noisy cases are referred to as “Clean”, “N_G” (only gallery has noise), 
“N_P” (only probe has noise), and “N_G+P” (both) respectively. Fig. 3 demonstrates 
the comparison result. It can be seen that our proposed SLR method shows high 
robustness against the noisy data challenge, with quite slight accuracy drop. This is 
mainly attributed to the advantage of our method by effectively integrating the set 
information from individual samples, without any assumption on the data distribution. 
Another finding is that the linear subspace based method MSM is more stable than the 
affine subspace based ones AHISD/CHISD and SANP, since the former treats the set 
samples as a whole and can suppress the noisy data effectively. 

 

Fig. 3. Comparison of different methods on the practical problem of noisy set data 

4 Conclusions 

In this paper, we have proposed a simple yet effective Sample-Label Regression 
(SLR) approach to image set classification. With no assumption on the form of set 
data distribution, our approach exploits the Partial Least Squares (PLS) to directly 
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learn an efficient linear regression model from the image data space to the class label 
space. When applying the learned model to classify novel test image set, it involves 
only simple linear operations and can effectively integrate the set information from 
individual samples. The extensive experimental results have shown the effectiveness 
of our method and its favorable robustness to noisy set data in practical applications. 
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